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Abstract 

A number of procedures have been used to analyze nonmonotonic binary 
data to predict the probability of response. Some classical procedures are 
the Up and Down strategy, the Robbins-Monro procedure, and other se- 
quential optimization designs. Recently, nonparametric procedures such as 
kernel regression and local linear regression have been applied to this type 
of data. It is well known that kernel regression has problems fitting the data 
near the boundaries, and a drawback with local linear regression is that it 
may be too linear when fitting data from a curvilinear function. This report 
introduces a procedure called local logistic regression, which fits a logistic 
regression function at each of the data points. United States Army projectile 
data are used in an example that supports the use of local logistic regres- 
sion for analyzing nonmonotonic binary data for certain response curves. 
Properties of local logistic regression are presented along with simulation 
results that indicate some of the strengths of the procedure. 
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1. Introduction 

Consider modeling the dose-response curve for the ungrouped binary re- 
sponse variable y. This dose-response curve represents the probability that 
y is 1 for each given value of y dose,” the single regressor 21. In many ap- 
plications in such areas as biology, industry, and business, this response 
curve may be modeled successfully by a monotonic parametric function 
such as the normal or logistic cumulative distribution function (cdf). How- 
ever, in this report, we present an application where the response curve is 
nonmonotonic, rendering traditional methods such as logistic regression 
inappropriate. We suggest the use of local logistic regression (llogr), a non- 
parametric method that simultaneously enables modeling a nonmonotonic 
dose-response curve while maintaining the restriction that all estimated 
responses take values between 0 and 1. The following real-life example 
demonstrates the flexibility and applicability of this new procedure. 

An experiment of importance to the development of a kinetic energy pen- 
etrator (a a projectile”) and the armor to resist it is to model the probability 
that the projectile will penetrate the plate of armor as a function of the ve- 
locity of the projectile. Normally, one expects the probability of penetration 
to increase as velocity increases. Routinely, testers are asked to estimate the 
V&, the velocity where the probability is 0.50 that the projectile will pene- 
trate the armor. Experimenters use variants of the Up and Down strategy 
(Dixon and Mood, 1948), the Robbins-Monro (Robbins and Monro, 1951), 
or other sequential designs to gather observations, and the maximum like- 
lihood estimate (MLE) for the mean (V&J is formed with a logistic or nor- 
mal response function. An interlaboratory study of V& estimation revealed 
widely varying estimates for some penetrator-armor matches (Chang and 
Bodt, 1997). Initially, the blame was thought to lie with varying test pro- 
cedures among experimental testing sites. Recent careful study of the data 
suggests a phenomenon at work here that one material scientist refers to as 
the * shatter gap.” 

The shatter gap is not precisely defined, and the exact physical mechanism 
for significant bullet shattering is unknown. Simply put, when bullet shat- 
tering occurs against certain armor materials, kinetic energy is diffused, 
thereby reducing the ability of the penetrator to defeat the armor. This re- 
duction is reflected over a range of velocity in which a decrease in response 
probability accompanies increasing velocity Eventually, as velocity contin- 
ues to increase, the kinetic energy developed is so much an overmatch that 
the probability of penetration rises again. One working definition, suitable 
for data currently available, characterizes the shatter gap in terms of an up- 
per and lower V&, V~OU, and V&L, respectively. In those data, penetrator 
shatter does not cause the probability of penetration to decrease until after 
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a V~O is achieved. A second, higher, 1 $0 is achieved by partially intact pene- 
trators with increased velocity The interval they bound is thought of as the 
shatter gap. 

These ideas are illustrated in figure 1, showing the results of firing 303 
projectiles at macrocomposite armor with velocities ranging from 1432 to 
2773 ft/s. The response variable is whether the projectile penetrated the ar- 
mor (scored as a * 1”) or failed to penetrate the armor (scored as a * 0” ). 
Typical of penetrator-against-plate response curves, low velocities result in 
a low proportion of penetrations, and high velocities result in a high pro- 
portion of penetrations. Unusual is that over intermediate velocities, the 
proportion of penetrations first rises with velocity, then falls, and then rises 
once more. Note especially the response activity between 2100 and 2300 
ft/s relative to response activity for neighboring velocities. 

The shatter gap phenomenon is more clearly seen from the curve in figure 
1; this curve (obtained by the method presented in sect. 2) represents the 
estimated probability of penetration as a function of velocity. 

We can represent the Vs:30 graphically by extending a line at the probability 
of 0.5 over to the estimated probability curve and dropping lines down to 
the velocity axis at the intersection of the line and the curve. The interval 
bounded by these two 1+,0’s on the velocity axis is the shatter gap. Figure 1 
shows that the shatter gap extends from V50f, of approximately 1713 ft/s to 
V&T of approximately 2510 ft/s, a distance of 797 ft/s, far larger than the 
usual error of approximately 100 ft/s. 

In section 2 we discuss several analytical methods to deal with data of this 
type. 

Figure 1. Army l- . -- . . . . . . . ". . .-.-... I 
macrocomposite data /- 
(solid dots), illustrating 
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2. Possible Models 

An obvious approach to fitting 0 to 1 response data is to use the standard 
logistic regression model. However, as will be demonstrated, such a model 
will fail to identify the shatter gap in the penetration data because of the in- 
herent monotonically increasing (or decreasing) nature of the logistic curve. 

Two more promising possible models for fitting data of the type given in 
the curve in figure 1 are the cdf mixture model (CDFMM) (Bodt and Chang, 
1997), a parametric method model procedure, and local Ilogr, a nonpara- 
metric method. 

2.1 Parametric Models 

Consider the model 

yi = P(q) + &i, i = 1, . ..) n ) 

where y~i represents the response variable, P(Q) is the penetration proba- 
bility that is a function of the velocity vi at the ith experimental run, and Q 
is the random error term. The response is recorded as a * 1” if armor pene- 
tration has occurred and a y 0” otherwise. The errors are assumed to have 
expectation of zero. 

In the logistic regression model, the form of P (t)i) is based on the logistic 
cumulative distribution function, where 

P(Vi) = (1 + exp [- (PO + p1Vi)])-I = (1 + exp (-Q))-’ = F (2)#), 

where gi = (1 vi) and p = 
0 

PO where underlining indicates a vector - 
Pl ’ 

and a prime indicates a transpose. 

The method of maximum likelihood is used to obtain estimates (MLEs), 
of the unknown parameters ,& and pi. To obtain the MLEs, the method 
requires an iterative procedure, for example, the Gauss-Newton method 
using iterated reweighted least squares (IRLSs). Details concerning logistic 
regression may be found in McCullagh and Nelder (1983), Myers (1990) 
and Ryan (1997), among many others. 

While the logistic regression fit guarantees an estimated response between 
0 and 1, the fit, as seen in figure 2 (dashed line), is entirely inadequate to 
the armor penetration data- resulting in a nearly flat line fit, completely 
missing the up and down nature of the response seen in the llogr fit (solid 
line). 



Figure 2. Linear logistic 1 .I 
regression fit (dashed . -.--..- *.. . 
line) and local linear 0.9 
regression fit (bold solid 
line) to macrocomposite 
data. 
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The CDFMM approach, using mixtures of three cdfs, models the penetra- 
tion probability P(,u) as a function of velocity Y as 

where FT. FI, and F, represent appropriately chosen cdfs for the transition, 
intact, and shattered mechanisms. 

One interpretation of the above model is to consider P(~J) as the probabil- 
ity of response due to the mixture of two penetration mechanisms. The 
first mechanism is penetration from an intact (I) projectile. The second 
mechanism is penetration from a shattered (S) projectile. The penetrator 
being intact or shattered is also a function of velocity in this formulation, 
and so the proportions of the two penetration mechanisms in the mixture 
will vary also with velocity. It is assumed in the model that the probability 
of projectile shatter will increase monotonically. This proportion change is 
modeled as the transition (T) from the intact mechanism to the shattered 
mechanism. 

The CDFMM model fit to the Army penetration data is illustrated in figure 
3, which also shows for comparison the llogr fit. 

The dashed line represents the CDFMM fit using logistic cdfs with esti- 
mated means of 1972, 1664, and 2523 and estimated standard deviations 
of 186, 56, and 46 for the transition, intact, and shattered mechanisms, re- 
spectively The curves are obviously quite similar, with the CDFMM fit 
resulting in slightly larger (at around 1800 ft/s) and slightly smaller (at 
around 2400 ft/s) penetration probabilities. The shatter gap obtained with 
the CDFMM fit is only slightly wider than that obtained with the llogr fit. 
The estimates are the MLEs for this nonlinear model with binary response, 
an example of a generalized nonlinear model. 

One problem with the CDFMM approach is that six parameter estimates 
are required to fit the model. This requires considerable effort to achieve 
convergence. We used the SAS Proc NLIN (SAS Version 7) with an appro- 
priately iterated weight matrix to obtain the fit for the Army penetration 

4 



Figure 3. Comparison of 1 
fits between llogrs (solid 
line) and cdf mixture 
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data. Our experience suggests that this procedure is extremely sensitive to 
the starting values, often failing to converge if the starting values are only 
slightly different from the values at convergence. Additionally, the result- 
ing fit, as can be seen in figure 3, is somewhat inflexible, resulting in fits that 
look like a mixture of logistic cdfs, even when the data do not exhibit such 
a pattern. That is, the curve may appear to be too smooth, as illustrated in 
figure 3, where the llogr method seems to capture the wiggle resulting from 
the cluster of data around 2250 ft/s. 

2.2 Nonparametric Models 

Another approach to modeling these data is to use nonparametric regres- 
sion techniques. Such methods as kernel regression and local linear regres- 
sion can trace out smooth curves with a multitude of peaks and valleys. The 
shatter gap effect that must be captured in the armor penetration example 
could then be identified by such y local” fi tting techniques. 
Consider again the model 

yi = P(q) +&i, i = l)...) n, 

where P(vi) is no longer specified by a parametric function such as the 
CDFMM function given in section 2.1. It is assumed only that P(Q) is some 
arbitrary smooth function. If E(Q) = 0, then E(yi) = P(vi) = Pi, the ar- 
mor penetration probability at velocity vi. It follows that $i = P(vi) = & 
is the estimated penetration probability at velocity vi. Kernel regression is 
a method of approximating P(Q) (where ~0 is any arbitrary velocity in- 
cluding Q, the velocity for the ith observation) using a weighting sequence 
on the response variable, where the weights are functions of the distances 
between the values of the regressor variable and ~0. One form of the ker- 
nel weighting sequence, proposed by Nadaraya (1964) and Watson (1964), 
assigns weights of h& to yj when estimating the response at ZIO by 
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where I<() represents some appropriate kernel function and b is bandwidth. 
The kernel estimate of response at ?I,, p:, is given by a weighted average of 
the observed yi’s as 

where I,$ (I+ replaces ~~~ in the /I;~ expression above) are the kernel weights 
on the observations yj for estimating the mean response at velocity 11; using 
the kernel function I<(). j = 1.2. . . . . 71. 

All n estimates of mean response may be expressed as 8” = H”;lg, where 
6” is the n x 1 vector of kernel predictions and H” is the 71 x II matrix of - 
weights with rows bik’ = (11:~ 11:~ . . . /$r,), for i = l,..., 71,. The matrix 
H’, called the kernel hat matrix, plays a role in kernel regression similar to 
that of the ordinary least square (OLS) ” hat” matrix H in linear regression. 

The kernel estimate of P(u~) depends on the choice of the kernel func- 
tion K() and the bandwidth 0. For example, one popular choice for kernel 
function is the simple Gaussian kernel defined as I<(U) = cxp (-I?). The 
method for selecting the bandwidth is extremely critical. The magnitude of 
the bandwidth determines the smoothness, or lack thereof, of the regres- 
sion function. One of the more commonly used methods, referred to as the 
method of cross-validation, selects the bandwidth to minimize the PRESS 
(Allen, 1974) statistic. A related method finds b by minimizing a penalized 
PRESS statistic, called PRESS*(b), given by 

? (Yi - p;-i (b)) 2 
PRESS*(b) = ‘=l 

n - t,r [H”] ’ 

where p2-i (b) is the a minus-i” predicted penetration probability based on 
kernel regression ZJ~ for the current value of b with the ith observation re- 
moved, and tr [H”] is the trace of the n x n kernel weight matrix H”. Since 
tr [Hk] reflects the kernel fits’ ” model degrees of freedom” (Cleveland, 
1978), it is seen that the denominator of PRESS*(b) penalizes the PRESS 
statistic for choosing b too small. Empirical studies by the authors and oth- 
ers (Einsporn and Birch, 1993; Mays, 1995) have demonstrated that using 
PRESS*(b) is often superior to using PRESS as a bandwidth selector. 

The kernel regression fit to the armor penetration data results in a smooth 
curve that follows the up and down pattern exhibited in figures 1 and 3. 
While this is a desirable characteristic, the resulting curve is not appealing, 
since it is entirely possible that some of the curve’s fitted values may lie out- 
side the 0 to 1 range, a natural restriction resulting from estimating the pen- 
etration probabilities. Indeed, the kernel regression fit to the Army macro- 
composite data results in fits at the lower left that are less than zero and fits 
to the upper right that exceed one. This problem is not avoided by the use of 
more complicated nonparametric smoothers, such as local linear regression 
(Hardle, 1990), where each fit at v = 110 is obtained locally by a weighted 
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simple linear regression model with the h&‘s serving as the weights, or lo- 
cal polynomial regression (Fan and Gijbels, 1996). These methods also do 
not restrict the resulting fits to between 0 and 1, a requirement when model- 
ing probabilities. The local linear regression fit to the macrocomposite data 
can be seen in figure 2. 

However, the logistic regression parametric method can be combined with 
the nonparametric concept of local fitting to produce a smooth curve, flex- 
ible enough to capture the up and down patterns exhibited in the armor 
penetration data and giving fits that are between zero and one. We propose 
local (linear) logistic regression where at each velocity 21 = ~0, a weighted 
linear logistic fit is obtained with h&‘s serving at the weights, in exactly the 
same manner as in local linear regression. That is, the fit at ‘u = ~0 would 
be obtained as 

p (vo) = (1 + exp [- (boo + 1;110~0)])-~ = (1 + exp [- (L@~)])-~. 

The estimated coefficients jo, which change values for each ‘u = ~0, are 
obtained via the same IRLS algorithm referred to earlier for logistic regres- 
sion, with a slight adjustment to the weight matrix. Thus, one step of the 
algorithm would compute the updated value of B. as 

jol = joo + p*ox> -l x’J@oyT, , 
where the n x n diagonal matrix I/i/o has elements 

We see that llogr follows a weighting scheme that combines the logistic 
weights with the kernel weights in a local manner. The n x 1 vector $, has 
elements 

the locally adjusted response to velocity wj. Upon convergence of the IRLS 
algorithm, & is set equal to loi, and the estimated response is obtained as 

F (w,,) = F (i@,). 
Approximate inferential information can be obtained by straightforward 
application of the variance operator, the multivariate delta method, and the 
asymptotic distribution of the MLEs. For example, it can be shown that the 
asymptotic variance of lo is var ( > i. = (x’wox)-l (X’WlX) (x’wox)-l, 
where the diagonal elements of the n x n diagonal matrix IV0 are wajj = 

F (Qo) (1 - F (~;p~)) h&, and the diagonal elements of the n x n diag- 
onal matrix VVi are wijj = wajj h$. Using this result, one can express the 
asymptotic variance of each fit at 21 = ~0 by applying the delta method as 

var (F (z&$0)) = f2 (&PO) vb var (eo) ‘uo. 
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It follows then from the asymptotic distribution of F that one form 
of the approximate (1 - o) 100% confidence interval for P (~0) is 

where the standard error of F 
( > 
IJ,~,, is the square root of VHY F *II’ r> ( (4,)) 1 

with I0 replacing & in this variance expression. 

While this approach for establishing confidence intervals is a straightfor- 
ward application of Wald inference, the resulting interval, (LCL, UCL), may 
result in lower confidence limit (LCL) less than zero or an upper confidence 
limit (UCL) greater than one. To avoid this problem, we can consider a sec- 
ond approach where we obtain the (1 - 0) 100% confidence interval for the 
linear predictor zJ,jO by once again applying the delta method. It can be 
shown that the asymptotic variance of the linear predictor Q?,, is - 

with resulting (1 - (1) 100% confidence interval as 

&ii, f Zl-” se I@” = (LCL*. ucL*). - 2 ( > 

It follows that an approximate (1 - 0) 100% confidence interval for F 
( > 
&/!I,, - 

is (F (LCL*) : F (UCL*)). 

The general procedure is to obtain the fit and corresponding (1 - 0) 1OO’X 
confidence interval (by either method) for a fine grid of values of lie through- 
out the range of velocity values. Connecting the fits, lower confidence lim- 
its, and upper confidence limits with straight line segments results in three 
smooth curves, the curve fit to the data and the two (1 - a) 1OO’X confi- 
dence bands. Both types of interval methods are illustrated in figures 4 and 
5. The method based on the linear predictor results in unsatisfactory wide 
intervals at the boundaries. 

Our procedure is a specific example, though developed independently, of 
the related method, local polynomial kernel regression of generalized lin- 
ear models, introduced by Fan, Heckman, and Wand (1995). 

Once the response curve and the confidence bands are obtained, the V~O 
as well as confidence intervals for the V~O can be computed. Because it is 
not possible to obtain a closed functional form for the estimate of P (vo), 
the V~O and confidence intervals for the Vsc, are obtained through the y in- 
verse” process, where a horizontal line is extended from P(V) = 0.5 to 
the three curves, representing the upper confidence limit, the estimated re- 
sponse curve, and the lower confidence limit. At the intersection, vertical 
lines are dropped to the velocity axis, where the V,O and the 95-percent 
confidence interval for the V~O, (1% 01,. V&p), can be obtained. (We note that 
if the shatter gap effect is present, there will be two I$” values, each with 
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Figure 4. Local logistic 
regression fit to 
macrocomposite data 
with 95% confidence 
bands. 
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Figure 5. Local logistic 
regression fit to 
macrocomposite data 
using linear predictor 
for confidence interval. 
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a corresponding 9%percent confidence interval.) This process is easily ac- 
complished numerically with a computer. The IRLS algorithm to compute 
the llogr fit is outlined in appendix A. A SAS macro for calculating the llogr 
fit to any set of 0 to 1 data may be obtained from the authors. The complete 
SAS macro is listed in appendix B. 

10 



3. Some Simulation Results 

In this section, we present a small simulation study, generating binary data 
from several nonmonotonic dose-response curves. Because the primary in- 
terest with the Army penetration data is estimation of the V& values, we 
evaluate the llogr procedure by comparing the estimated V& values with 
the true Vi0 values. The true cdf used in this evaluation was chosen as the 
cdf mixture model: 

The values of ,UT, 1-11, and PS were varied while fST, a~, and as were set 
equal to each other at a constant value of 0.05. The cdf representing FT, F1, 
and Fs was chosen to be the logistic cdf. For example, the cdf represent- 
ing FT can be written as FT = (1 + exp (- (X - /LT) /uT))-~. While our full 
simulation study considered a variety of values of PT, ,UI, and ps, for the 
sake of brevity we show only the results for the three combinations given 
in table 1 and used to generate the three curves displayed in figure 6. As 
seen in figure 6, each curve has two Vso values. 

Table 1. Parameter 
values for simulated 
curves. 

Figure 6. Curves 1 to 3 
from table 1 generated 
for Monte Carlo 
simulation. 

fhrve PT PI PS 

1 0.4 0.2 0.9 

2 0.4 0.2 0.7 

3 0.4 0.2 0.6 
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For the simulations, random binary responses were generated for 100 evenly 
spaced velocities between the values of 0 and 1. As can be seen in fig- 
ure 6, the velocity values have been resealed between 0 and 1 so that the 
value of the bandwidth would be more meaningful. The cdf mixture model 
was simulated with SAS interactive matrix language (IML) for each of the 
curves in table 1. The process was repeated 500 times, and the average T/:,0 
values were computed over the 500 Monte Carlo repetitions. We view these 
average V&j values as assessing the ability of the llogr procedure to estimate 
the true I’,” values. We used the PRESS* procedure here to obtain the band- 
width for the liogr procedure. 

Tables 2 and 3 contain the results from the simulations for estimating the 
Vs, values. As can be seen in the fifth column of the tables, the local logistic 
regression does an exceptional job in estimating the lower and upper V~O 
values when they are calculable. The average absolute error of each esti- 
mate is less than 0.03. The quality of these estimates indicates the goodness 
of fit of the llogr procedure and its ability to estimate the I$) values. The 
excellent estimation can also be attributed to the ability of the PRESS* pro- 
cedure in finding an appropriate value of the bandwidth to fit this family 
of curves. 

Note also that in the third column of tables 2 and 3, the number of vie 
values that were not calculable is in parentheses. In order for both V~OI, 
and VF,“~J to be estimated, the fitted llogr curve must cross the P(V) = 0.5 
line three times, as illustrated in figure 1. When the llogr curve crosses the 
P(V) = 0.5 curve line only once, then only one of the V~O values can be esti- 
mated: V&, if the crossing occurs at lower values of velocity, and V,NJ if the 
crossing occurs at upper values of velocity (with the other V~O value being 
incalculable). Data generated from a curve similar to curve 1 in figure 6 will 
more frequently fail to result in a both V 501, and &arr being estimable. Low 
penetration probabilities for high velocities in curve inhibit the movement 
of the sequential design to the highest velocities where a third crossing of 
P(w) = 0.5 could occur. Note that 31 percent of the time (156 samples out 
of 500), the V~O[J could not be calculated for curve 1: clearly an undesirable 
situation. One way to resolve this problem would be to increase the sample 
size at larger velocities. 

Table 2. Lower V5, 
estimation summary 
(incalculable values in 

Curve True L& Estimate L&L Average error Average abs. error 

1 0.20190 0.20827 (4 1) 0.00637 0.02590 

Parentheses). 2 0.20190 0.20782 (38) 0.00592 0.02425 

3 0.20190 0.20901 (45) 0.00711 0.02363 

Table 3. Upper I& 
estimation summary 
(incalculable values in 
parentheses). 

Curve True &,I, Estimate L%OL Average error Avgerage abs. error 

1 0.89999 0.88810 (156) -0.01190 0.02504 

2 0.69975 0.69845 (0) -0.00130 0.01834 

3 0.59810 0.58604 (22) -0.01205 0.02672 
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4. Discussion and Summary 

The research presented here has shown that the llogr procedure provides 
a more flexible and reasonable approach to fitting binary data from a non- 
monotonic function than the classic logistic regression procedure, cdf mix- 
ture models, and some other nonparametric procedures (kernel and local 
linear regression). Through simulating a family of nonmonotone functions, 
it has been shown that the llogr procedure provides an outstanding es- 
timate of V&I values with very small average and absolute errors, when 
calculable. 
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Appendix A. Numerical Considerations 

The values of the fits are obtained by using the IRLS algorithm. The proce- 
dure is outlined below. 

To find the proper bandwidth: 

For each fixed value of bandwidth b, perform the following: 

1. Compute the kernel weights for each value of velocity, Y = vi, for 
i= l,... :n,as 

2. Ateachv = zli:i = l,... , n, compute initial coefficients via local lin- 
ear regression (llr) as 

&= ( xwix )-h%li: 
where the n x n diagonal matrix T/f/i has elements 1-“jj = h$. 

3. Compute n x 1 vector 311 as yrj = Yj -q&J 
f <&J 

and update the elements 

of IQ as 

~~i=F(ll:$O)(l-F(v:~io))h~, forj=l,...:n. 

4. Compute the updated estimates of the coefficients as 

5. If &, z ,&, quit and let & = Iii. Otherwise, replace &i by ,& and 
return to step 3 above. 

6. After convergence, compute the fit at 21 = vi as p (Q) = F (z&). 

7. After the fits are obtained for all n observations, compute the PRESS*(b) 
statistic as 

c (Yi - p (%)-i)’ 

PRESS* (b) = i=l 
n- tr [H”] ’ 

where p (z~i)-~ is the llogr (local logistic regression) fit based on the 
current bandwidth b, obtained with the ith data point (yi, vi) removed 
from the data set. The current version of the algorithm obtains ? (ui)-i 
by using steps 1 through 6 above, based on the n - 1 point data set. 
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8. Determine b*, the value of b that minimizes PRESS*(b). This can be ac- 
complished either through a search routine (the algorithm currently 
uses a binary search to find h*) or by finding h* through a candidate 
list of bandwidths. 

Upon completion of steps 1 though 8, the value of b* has been found and 
the n fits are obtained at the 71 data points based on 2)*. Often, however, the 
fitted curve is desired over a second series of v values, which may or may 
not include the original data points. For example, the predicted probability 
of response may be desired for all velocities ranging from the minimum 
observed velocity to the maximum observed velocity at every 10 ft/s. In 
this case, steps 2 through 6 of the IRLS algorithm above are changed only by 
the replacement of Tli with ~(1, one of the velocity values where predictions 
are desired. 

18 



I Appendix B. Program Documentation & Comments 

Below is the SAS code, preceded by a few notes, to fit binary data via 
the nonparametric local logistic regression procedure (llogr) presented in 
this report. The llogr procedure uses PRESS* as the method for bandwidth 
selection. 

Some notes about the program are presented below. 

1. Lines 6, 7, and 10 read the data from a file. The file can be a text (.txt), 
print (.prn), or flat data file. The program is set up to read a file con- 
taining two columns of data: the first column contains the velocity, 
and the second column is the response (0 or 1). 

The INFILE statement reads the data set from its stored location, de- 
noted by “fi lename.filetype.” 

2. Once the data have been read into the IML procedure, the regressor 
(in this case, the velocity) is resealed such that the values are between 
0 and 1. The program then finds the bandwidth to minimize PRESS*. 
Once the bandwidth has been found, the program does the following: 

l Obtains the llogr fit at each of the data points (lines 220- 248) 

l Finds the lower and upper V50 values (lines 252- 452) 

l Obtains predictions at lo-ft/s intervals (lines 461- 502) 

3. The program outputs the following (lines 518- 521): 

l The bandwidth (BW). 

l The chi-square statistic, the model degrees of freedom, and the 
mean squared error, denoted by CHISQR, MODELDF, and MSE, 
respectively. 

l The lower V&J (V&) and the upper V& (V&u) values. 

l The predictions at IO-ft/s intervals: Velocity (VEL), fitted value 
(YHATO), and lower and upper confidence limits for the fitted 
value (LCLO and UCLO). 

4. Once the output is obtained, the user can produce a plot of the fitted 
curve using Excel or another plotting application. However, the SAS 
code below also generates a plot with upper and lower confidence 
bounds in Computer Graphic Metafile (CGM) format. The code is on 
lines 538 to 552. The user must supply the filename and the directory. 
DO NOT CHANGE THE EXTENSION. Once the CGM file has been 
created, the user can view the plot in MS Word or another application 
that converts CGM files. 
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SAS Code 

The following represents the directory, filename, and filetype of the data 
set. The data set should be in text form or a flat data file. 
Options 1~330 ps=54 nodate nonumber, 

Title1 ‘Local Logistic Regression Analysis’, 

Title’2 ‘usinK Press* to Obtain BandwIdth’, 

DATA MACRO ; 

INFILE “d:\research\AR~IY\HACROCOllPtlSITE ORIGINAL DATA PRII”; 

Here variables are being read from the data set. In this case, they are veloc- 
ity and response. 

INPUT VELOCITY RESPONSE; 

DATA LLOGR; 

SET HACRO, 

RUN / 

PROC SORT; 

BY VELOCITY; 

RUN; 

The following sorts the data set by velocity 

PROC IHL; 

Use LLOGR, 

Read All Into X Var {VELOCITY}; 

Read All Into PI Var {RESPONSE}; 

Now the velocity is being converted/transformed to the 0 to 1 data range. 
This is so that we can obtain a better interpretation of the bandwidth. That 
is, given a finite range for the bandwidth, one can interpret its relative size. 
However, if the data are not converted, the range of the bandwidth is from 
0 to infinity, allowing a less meaningful interpretation. 

N=NROW(X); 

MINX=HIN(X); 

HAXX=flAX(X); 

LENCTH=(MAXX-!INX)/iO + 1, 

VEL=J(LENGTH,l,O), 

v=o; 

DO I=HINX TO HAXX BY 10; 

V=V+l; 

VEL[V,]=(I-HIflX)/(HAXX-)IIAX); 

END; 
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X=(X-MINX)/(MAXX-MINX); * Transforms X-variable to [O,l] Range; 

*** INITIALIZATIOW ***; 

H=J(N,i,i); 

YHAT=J(N,l,l); 

LCL=J(N,l,i); 

UCL=J(N,i,i); 

PRSS=J(3,1,0); 

HO=J(N,l,O); 

TYHATMI=J(N,l,i); 

*** END OF INITIALIZATIONS ***; 

Here begins the subroutine to obtain the true PRESS statistic and the sub- 
sequent bandwidth found to minimize this PRESS statistic. 
START TRUEYMI; 

DO I=1 TO N; 

FREE XMI; 

IF I=1 THEN 
DO; 

XE!I=X[Z:N,l; 

PHI=PI[2:N,l; 

END; 

ELSE IF I=N THEN 
DO; 

XMI=X[l:N-i,]; 

PMI=PI[i:N-l,]; 

END; 
ELSE 

DO; 

XMIi=X[l:I-i,]; 

PMIi=PI[i:I-l,]; 

XMIZ=X[I+i:N,]; 

PMIZ=PI[I+l:N,]; 

XMI=XHIi//XMI2; 

PMI=PMIl//PMIZ; 

END; 

XMI=J(N-i,i,i)IlXMI; 

xo=lllx[I,1; 

DO=X[I,]-XMI[,2]; 

DSqO=DO##2; 

DINT0 = (-i)#DSqO/(BW##2); 

EXPDO = EXP(DINT0); 



ESUHO = SUH(EXPDO), * RON SUH OF NUtlERATOR VALUES, 

KO = EXPDO/ESUHO, 

BHAT=I~IV(X~II'~DIAG(KO~~XI1I~*X~II'*DIAG(KO)*PI1I, 

DO ITER=l TO 2; 
Y=XHI*BHAT, 

P=i/(l+EXP(-Y)); 
9=1-P; 

Z=EXP(-Y)/((l+EXP(-Y))##Z), 

W=DIAG(P#Q)#DIAG(KO); 

XPXI=INV(XMI'*N*XMI), 

BHAT=BHAT+XPXI*XMI'*N*((PHI-P)/Z); 

END, 

TYHATMI[I,l]=l/(l+EXP(-XO*BHAT)); 

END, 
FINISH; 

* Subroutine to begin the search for the 

bandwidth that minimizes Press*; 
START BUSEARCH; 

BWO = IO.1, 0.5, 0.7}, 
DO A = 1 TO 3; 

BW=BVO[A,]; 

D=X*J(l,N,i)-J(N,l,l)*X'; 
D=D'; 
DSq=D##Z; 

DINT = (-1)1(DSq/(BWlt2)lJ(N,N,l)); 

EXPD = EXP(DINT); 
ESUH = EXPD[,+]; * ROW SUH OF NUMERATOR VALUES; 

K q EXPD/(ESURjJ(l,N,l)); 

RUN TRUEYNI; 

PRSS[A,] = SUM((PI-TYHATMI)N#2)/(N-TRACE(K)); 
END, 

* SECOND LOOP SEARCHES FOR THE BANDMIDTH TO MINIMIZE The True PRESS*; 
ITERB=O; 

MINI=HIN(PRSS); 

MINOLD=HAX(PRSS); 

DO WHILE (ABS(nIf~I-MIAOLD)>lE-8); 
ITERB=ITERB+i; 

MINOLD=NAX(PRSS); 

IF MINI = PRSS[l,] THEN 
DO; 
AHIN = 1; 

SET1 = BWO[l,]; 
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SET2 = 2#BWO[l,]-BWO[2,]; 
SET3 = BWO[1,1/2; 
VEC = SET3//SET2; 
BVO[l,] q MAX(VEC); 
BM0[3,1 = BWO[2,1; 
BWO[2,1 = SETl; 

END; 

IF MINI = PRSS[2,] THEN 
DO; 
AMIN = 2; 
MAXI = MAX(PRSS); 

IF MAXI = PRSSt1,1 THEN 
DO; 
AMAX = 1; 
BWO[l,] = BUO[2,1; 
BWO[2,1 = (BWO[2,1 + BW0[3,1)/2; 

END; 

IF MAXI = PRSS[3,1 THEN 
DO; 
AHAX = 3; 
BWO[3,] q BWO[2,1; 
BW0[2,1 = (BWO[2,1 + BWO[1,1)/2; 

END; 
END; 

IF MINI = PRSS[3,1 THEN 
DO; 
AMIN = 3; 
SET1 = BWO[3,3; 
BWO[3,] = 2tBW0[3,]-BW0[2,]; 
BWO[l,] = BWO[2,]; 
BWO[Z,]=SETi; 

END; 

* OBTAIN THE LOCAL LOGISTIC FIT FOR THE NEW VALUE OF THE BANDWIDTH*: 

BW = BWO[AMIN,]; 

D=X*J(l,N,i)-J(N,l,l)*X'; 
D=D'; 
DSQ=D##2; 
DINT = (-l)#(DSQ/(BW#rt2)#J(N,N,l)); 
EXPD = EXP(DINT); 
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ESUH = EXPD[ ,+] , * RO!: SUll OF NUIIERATOR VALUES 

K = EXPD/(ESU~l~J(l,~l,l)), 

RUN TRUEYIII, 

IIII1PRESS = SUa((PI-TYHATnI)##2)1(A-TRACE(K)); 

* VALUE OF PRESS FOR THE CURREliT BAIIDI!IDTH FOR THIS ITERATION* 

1: RESET POSITIONS OF BAIIDKIDTH AND PRSS VECTORS DEPENDIIIC ON THE VALUE OF 
PRESS FOR THE CURRENT VALUE OF THE BANDWIDTH*; 

IF AMIN = 1 THEN 

DO, 

PRSS[3,] = PRSS[Z,]; 

PRSS[2,] q PRSS[l,]; 

PRSS[ 1 ,] = MINPRESS; 

END, 

IF AMIN = 3 THEN 
DO; 

PRSS[l,] = PRSS[Z,], 

PRSS[Z,] = PRSS[3,], 

PRSS[3,] = MINPRESS, 

END; 

IF AMIN = 2 THEN 

DO, 

IF AMAX = 1 THEN PRSS[l,] = PRSS[2,], 

IF AMAX = 3 THEN PRSS[3,] = PRSS[Z,]; 

PRSS[2,] = HINPRESS; 

END; 

HINI=MIN(PRSS), 

END; * SEARCH FOR OPTIMAL BANDk’IDTH ENDS, 

FINISH; 

WGT=i, 

RUN BblSEARCH; 

* Haung obtained the banduidth, ue can now obtain the local logistic regression fit*; 

X2=J(N,l,l)IIX; 

H=J(N,l,i); 

Do I=1 to N, 

D=X[I,]-X; 

DS$=D##2, 

Dlnt=(-i)RDSq/(BW##2); 

Expd=Exp(Dint), 

Esum=SUM(Expd); 
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K=Expd/Esum; 

H[I,l = K[I,I; 

BHAT=INV(X2'*DIAG(K)*X2)*X2'IDIAG(K)*PI; 
DO ITER=i TO 2; 

Y=X2*BHAT; 

P=i/(i+EXP(-Y)); 

Q=l-P; 
Z=P#Q; 

W=DIAC(P%Q)tDIAC(K); 
XPXI=INV(X2'*W*X2); 
BHAT=bhat+XPXI*X2'*W*((PI-P)/Z); 

END; 
Y=XZ*BHAT, 
P=i/(i+EXP(-Y)); 
Q=i-P; 
Z=EXP(-Y)/((l+EXP(-Y))##2); 

W=DIAG(PtQ)#DIAG(K); 

XPXI=INV(X2'*W*X2); 

YHAT[I,]=l/(l+Exp(-X2[I,]*BHAT)); 

END; 
* ALGORITHM FOR COHPUTING THE LOWER V50 VALUE*; 
COUNT=O; 

X5O=J(3,1,0); 
DO I=1 TO N; 
IF COUNT=0 THEN 

DO; 

IF YHAT[I,])0.5 THEN 

DO; 

X50[1,]=X[I,]-0.05; 

X50[2,]=X[I,]-0.025; 

x5ot3,1=x[I,1; 
COUNT=l; 

END; 
END; 

END; 

SET50 = J(3,1,0); 

t OBTAIN PHAT FOR 3 VALUES OF X (DOSE) *; 

DO I=1 TO 3; 

D=XSO[I,]-X; 
DSQ=Dt#2; 

DINT=(-i)#DSQ/(BW##2); 
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EXPD=EXP(DI!IT); 

ESUtI=SUtI(EXPD); 

K=EXPD/ESWI, 

BHAT=INV(X2'*DIAG(K)*X2)*X2'*DIAG(K)*PI; 

DO ITER=l TO 2, 
Y=XZ*BHAT; 

P=l/(l+EXP(-Y)), 
9=1-P, 

Z=EXP(-Y)/((l+EXP(-Y))tt2), 

W=DIAG(P#q)#DIAG(K); 

XPXI=INV(X2'*k'*X2); 

BHAT=BHAT+XPXI*X2'*W*((PI-P)/Z), 
END; 

X0=11 IX50[1,]; 

~ET~~[I,I=~/(~+EXP(-XO~BHAT)); 

END, 

PTEBP=O; 
B=O; 

DO B=i TO 200;*WHILE (ABS(PTEMP-0.5))1E-4); 
B=B+i; 

IF SET50[2,] ) 0.5 THEN 

DO; 
INTERVAL=i; 

SET1 = X50[1,1; 

SET2 = (X50[2,l+X50[1,~)/2; 

SET3 q X50[2,]; 

X50[1,3 = SETl, 

X50[2,] = SET2; 

X50[3,1 = SET3, 
EAD; 

IF SET50[2,] ( 0.5 THEN 
DO; 

INTERVAL=2; 

SET1 = X50[2,]; 

SET2 = (X5013,] + X50[2,])/2; 

SET3 = X50[3,1; 

X50[1,]=SETl, 

X50[2,1=SET2, 

X50[3,]=SET3, 
END; 
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* OBTAIN YHAT FOR NEN VELOCITY*; 

V5OL = X50[2,]; 

D=VSOL-X; 
DSU=D##2; 
Dint=(-i)#DSq/(BW##2); 
Expd=Exp(Dint); 
Esum=SUM(Expd); 
K=Expd/Esum; 

BHAT=INV(X2'*DIAG(K)*X2)*X2'IDIAG(K)*PI; 
DO ITER=i TO 2; 

Y=X2*BHAT; 
P=l/(l+EXP(-Y)); 
q=1-P; 
Z=EXP(-Y)/((l+EXP(-Y))?#2); 
W=DIAG(P#$)#DIAG(K); 
XPXI=INV(X2'*W*X2); 
BHAT=BHAT+XPXI*X2'*W*((PI-P)/Z); 

END; 
xo=1Ilv5oL; 
PTEMP=i/(l+Exp(-XO*BHAT)); 

IF INTERVAL=1 THEN SET50=SET50[1,1//PTEMP//SET50[2,]; 
IF INTERVAL=2 THEN SET50=SETSO[Z,]//PTEMP//SET50[3,]; 

END; * SEARCH FOR V5OL ENDS; 
IF (ABS(PTEMP-O.~))~E-~) THEN v5oL=.; 

* ALGORITHM FOR COMPUTING THE UPPER V50 VALUE *; 
COUNT=O; 

DO I=N TO 1 BY (-1); 
IF COUNT=0 THEN 

DO; 
IF YHAT[I,](O.S THEN 
DO; 
XSO[i,]=X[I,]; 
X50[2,]=X[I,]+O.O25; 
X50[3,]=X[I,]+O.O5; 
COUNT=l; 

END; 
END; 

END; 

SET50 = 3(3,1,0); 
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* OBTAIli PHAT FOR 3 VALUES OF X (DOSE) * 

DO I=1 TO 3; 

D=XSO[I,]-X, 
DSQ=D##Z; 

DIrfT=(-l)#DSQ/(Bu##2); 

EXPD=EXP(DINT); 

ESWSU!l(EXPD), 

K=EXPD/ESUtI; 

BHAT=IIIV(X2'*DIAG(K)rXZ)tX2'IDIAG(K)*PI, 

DO ITER=l TO 2; 

Y=XZ*BHAT, 

P=i/(l+EXP(-Y)); 

4=1-P; 

Z=EXP(-Y)/((l+EXP(-Y))f#2); 

h'=DIAG(P#Q)tDIAG(K); 

XPXI=INV(X2'*k'*X2); 

BHAT=BHAT+XPXI*XZ'*W*((PI-P)/Z); 
END; 

X0=11 IX50[1,]; 

SET5O[I,]=i/(l+EXP(-XO*BHAT)); 

END; 

PTEHP=O; 
B=O; 

DO B=l TO 200; *WHILE (ABS(PTEHP-O.S)>lE-4); 

B=B+l; 

IF SET50[2,] ) 0.5 THE! 
DO; 
INTERVAL=l; 

SET1 = X50[1,1; 

SET2 = (X50[2,]+X50[1,])/2; 

SET3 = X50[2,]; 

X50[1,] = SETl, 

X50[2,] = SETZ, 

X50[3,1 = SET3, 
END, 

IF SET50[2,] < 0.5 THEN 

DO; 
IIITERVAL=2; 

SET1 q X50[2,]; 

SET2 = (X50[3,] + X50[2,])/2, 
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SET3 = X50[3,1; 

XSO[i,]=SETi; 

XSO[Z,]=SET2; 

X50[3,]=SET3; 
END: 

x OBTAIN YHAT FOR NEW VELOCITY*; 

V5OU = X50[2,]; 

D=VSOU-X; 
DSQ=Dt#2; 

Dint=(-i)#DSQ/(BW##2); 

Expd=Exp(Dint); 

Esum=SUM(Expd); 

K=Expd/Esum; 

BHAT=INV(XZf*DIAG(K)*X2)*X2'tDIAG(K)*PI; 
DO ITER=l TO 2; 

Y=X2*BHAT; 

P=i/(i+EXP(-Y)); 
Q=i-P; 

Z=EXP(-Y)/((i+EXP(-Y))ltt2); 

W=DIAG(P#Q)#DIAG(K); 

XPXI=INV(X2'*W*X2); 

BHAT=BHAT+XPXI*X2'*W*((PI-P)/Z); 
END; 

xo=1Ilv5ou; 
Y=X2*BHAT; 

P=l/(i+EXP(-Y)); 
q=i-P; 

Z=EXP(-Y)/((i+EXP(-Y))t#2); 

W=DIAG(P#Q)tDIAG(K); 

XPXI=INV(X2'*W*X2); 

PTEMP=l/(i+Exp(-XO*BHAT)); 

IF INTERVAL=1 THEN SET50=SET50[1,]//PTEMP//SET50[2,]; 

IF INTERVAL=2 THEN SET5O=SET50[2,]//PTEHP//SET50[3,]; 
END; * SEARCH FOR V5OU ENDS; 

IF (ABS(PTEM~-0.5))1~-2) THEN v5ou=.; 

MDDELDF=SUM(H); 
DFE=N-MODELDF; 

CHISQR=SUM(((PI-YHAT)##2)/(YHAT#(i-YHAT))); 

MSE=CHISqR/DFE; 



*** BAKE PREDICTIUllS AT INCREtIE1lTS OF 10 FRDll Ml VELOCITY TO IIAX VELOCITY ***, 
YHATO=J(tEIIGTH.1,0), 

LCLO=J(tEIIGTH,i,O); 
UCtO=J(tEHGTH,i,O), 
DO I=1 TO LEIGTH, 
D=VEL[I,]-X, 
D=D'; 
DSQ=D##2; 
DINT = (-i)#DSQ/(BV##2), 
EXPD = EXP(DIIIT); 
ESUB = SUH(EXPD); * ROli SUtl OF NUHERATOR VALUES, 
K = EXPD/ESUll, 

BHAT=INV(X2'*DIAG(K)*X2)*X2'rDIAG(ioxPI; 
DO iter = 1 to 2, 

Y=X2*BHAT; 
P=l/(l+EXP(-Y)); 
Q=l-P; 
Z=P#Q, 
W=DIAG(PtQ)#DIAG(K); 
XPXI=INV(X2'*W*X2), 
BHAT=BHAT+XPXI*X2'*W*((PI-PI/Z); 

END; 
Y=X2*BHAT; 
P=l/(l+EXP(-Y)); 
q=1-P; 
Z=EXP(-Y)/((i+EXP(-Y))tR2); 
Y=DIAG(PtLq)#DIAG(K), 
XPXI=INV(XZ'*!+'*X2); 

XO=llIVEL[I,]; 
YO=XO*BHAT; 
YHATO[I,]=l/(l+EXP(-YO)); 
PO=YHATO[I,]; 
VO=DIAC(K##2)lDIAG(P#Q); 
VBHATO=XPXI*X2'*VO*X2*XPXI; 
ZO=EXP(-YO)/((l+EXP(-YO))M?); 
VYHATO=(ZO#~2)#XO*VBHATO*X01; 
LCLO[I,]=YHATO[I,]-1.96*SQRT(VYHATO), 
UCLO[I,]=YHATO[I,]+l.96*SQRT(VYHATO), 
IF LCtO[I,]<O THEN LCtO[I,]=O; 
IF UCtO[I,]>l THEN UCLO[I,]=l; 

END; 
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VEL=VEL*(MAXX-MINX)+MINX; 

CZ={"XO" "YHATO" "LCLO" "UCLO"); 

PRED~=VEL~~YHAT~~~LCLO~~UCLO; 

CREATE YHAT2 FROH PRED:![COLNAHE=C2]; 
APPEND FROH PREOZ; 

X=X*(MAXX-MINX)+HINX; 

V50L=V50L*(MAXX-MINX)+MINX; 

V5OU=V50U*(MAXX-MINX)+MINX; 

Outputs are the bandwidth (BW), Chi-square statistic, model degrees of 
freedom, mean-squared error, I&O values, and the data (VEL, YHATO, LCLO, 
and UCLO) at lo-ft/s intervals. 

Print BW; 

Print CHISQR MODELDF MSE /; 

Print V5OL V5OU I; 
PRINT VEL YHATO LCLO UCLO; 

The following creates a SAS data set that can be then used in the Proc Glot 
procedure. 
Cl={"X" "PI"}; 

PREDl=XIIPI; 

CREATE YHAT~ FROM PRED~[COINAME=C~]; 
APPEND FROM PREDi; 

DATA PHAT3; 
MERGE YHATl YHAT2; 

PROC SORT; 
BY X; 

Below is the code to create a CGM format graph. This format gives us the 
capability to insert the plot in a Word file or any other application that reads 
the CGM file type. 
FILENAME GSASFILE 'filename.cgm'; 

GOPTIONS RESET=GOPTIONS DEVICE=CGM GACCESS=GSASFILE 
GPROTOCOL=SASGPASC GSFLEN=80; 

SYMBOL1 VALUE=DOT; 
SYMBOL2 INTERPOL=JOIN LINE=1 VALUE=NONE; 
SYMBOL3 INTERPOL=JOIN VALUE=NONE LINE=4; 
SYMBOL4 INTERPOL=JOIN VALUE=NONE LINE=4; 

AXIS1 LABEL=("VELOCITY, fps"); 

AXIS2 ORDER=(O TO 1 BY 0.1) 

LABEL=(ROTATE=gO ANGLE=-90 "RESPONSE"); 
PROC GPLOT DATA=PHAT3; 
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PLOT PI*X YHATO*XO UCLOtXO LCLO*XO / OVERLAY HAXIS=AXISl VAXIS=AXISZ, 

TITLE1 J=C H=2 ‘Local Logistic Regression Analym’; 

TITLE2 J=C H=2 ‘All llacrocomposlte Data’; 

Rllll, 

Quit; 
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